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Modes  of  Transverse  Oscillation 



Nonlinear Combustion Instability and Triggering Action 

Instability initiates in various ways, depending upon the 
operational domain:  (1) oscillations growing from combustion 
noise are named linear or spontaneous instabilities;  (2) oscillations 
initiated only by disturbances larger than noise are named 
nonlinear or triggered instabilities.   All limit-cycle oscillations are 
nonlinear; “linear” and “nonlinear” refer to initiation. 

Princeton  
experiment, 
circa 1961.  
A   “bomb”  
(gunpowder  
contained  
with burst disk)  
is used as the  
trigger. 



         EARLY THEORIES 
Nonlinear limit cycles were first  
predicted by Crocco & students  
in the 1960s using perturbation  
methods:  Sirignano, Zinn, and 
Mitchell dissertations. Triggering and 
stable and unstable limit cycles were 
predicted. 
 
Later, Zinn & Powell followed by 
Culick and co-workers used a 
Galerkin method to predict transient 
behavior as well. 
 
Except for one portion of Sirignano’s 
work, all the models used heuristic 
representations of combustion: e.g.,  
n, τ  model. 



Goals of Current  UCI  Combustion Instability  Research 
 

• Develop “simplified” liquid-rocket numerical model of 
combustion dynamics to test stochastic approaches and 
demonstrate the triggering of combustion instabilities. 

• Examine nonlinear stability. Identify  parameter domains 
allowing triggering. 

• Determine whether different pressure and velocity 
disturbance profiles lead to different limit cycles.  

• Extend the model with the inclusion of stochastic terms 
representing large-amplitude random perturbations. 
Perform the uncertainty quantification analysis. 

• Future: Extend the work to more detailed combustion 
dynamics models in collaboration with Georgia Tech and 
HyPerComp. 
 

 



 Model Equation System 
• The model equations  retain essential combustion dynamics 

but eliminate much of the secondary physics which could be 
added in later studies. This model should allow the testing of 
our statistical approaches before we engage in a full analysis. 

• The focus is on transverse oscillations in a cylindrical 
chamber allowing averaging over the axial direction and 
reduction to an unsteady, two-dimensional problem in the 
transverse polar coordinates. 

• Kinematic waves are neglected leaving only the longer 
acoustic waves. These kinematic waves travel primarily in 
the axial direction and because of larger gradients (i.e., 
shorter wavelengths) are more likely to be vitiated by 
turbulent mixing. 

• Viscosity, heat-conductive, and turbulent-mixing effects on 
the longer acoustic waves are neglected. 

• A model for co-axial stream turbulent mixing and reaction is 
developed and employed for a multi-injector configuration. 

• A simplified “short” multi-orifice nozzle boundary condition 
is used. Entrance Mach number remains constant. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Nonlinear Wave Equation for Pressure 

Momentum equations for radial and azimuthal velocities 

E is the energy per unit volume  
per unit time released by the  
combustion process. Modelling  
of E is required.  

Triggering  disturbance could appear in several ways: 
-- Introduction through reacting, mixing flow-field condition 
-- Introduction through injector-face boundary condition. 
-- An intermittent blockage in nozzle flow. 



 CONFIGURATION: Ten oxygen-methane co-axial injectors  
are placed in a combustion  
chamber.  The model equation is  
solved with a co-axial mixing and  
reaction for the heat-release.  
• Chamber length  is 0.5m  
        and diameter is 0.28m . 
•  Injector outer diameter, 1.1cm 
•  Injector inner wall 0.898 cm 
•  Inner flow of gaseous oxygen,  
•  Outer flow of methane gas  
•  “Short” multi-orifice nozzle 
•  Steady-state  pressure is  
      200atm, temperature is 2000K 
First, an individual injector is examined subject to a 
prescribed pressure oscillation; then, the analysis is made 
with ten injectors coupled to the chamber wave dynamics. 



Co-axial Mixing Model 
Energy and Species Equations 

Uniform pressure over jet 
One-step reaction 
Le =  1 
Use eddy diffusivity for D 
 
 
Ambient gas oscillates  
 isentropically. 
P and T are collapsed to one     
 function of entropy. 

minus 

minus 

minus 



Schvab-Zel’dovich Variables 

S-Z formulation plus Oseen approximation reduces three  
nonlinear PDEs to one nonlinear PDE and two linear,  
homogeneous PDEs.   We may use Green’s function for two  
equations or numerical integration for all three equations. 



A multi-scale problem is treated with a large-scale computational  
grid for the chamber wave dynamics and N fine grids  for the  
jet flames at  the N co-axial injectors.  



Frequency Response of Single Injector 
•  Sinusoidal pressure of  frequency f . 
•  Two characteristic combustion  
times  appear:  τM for turbulent 
mixing, τR for  chemical reaction. 
•   Time-lag: energy release rate E  
lags the pressure p oscillation. 
•  Reaction rate pre-exponental factor 
is varied from known value to explore 
frequency response for two  
time ratios:  f τM  and f τR  .   
•  E maximizes in a certain parameter 
domain for the two time ratios. 
•  The black line shows the path as 
frequency varies for the given co-axial  
injector, chamber conditions, and 
propellants. 



Long-time Pressure Amplitude  
vs. Triggering Disturbance Amplitude 

 -- At this operating point,  
there is a stable steady-state,  
an unstable limit-cycle, and  
a stable limit cycle. 
 -- Small disturbances decay  
with time. 
 -- Above a threshold  
amplitude but below the  
steady limit-cycle  
amplitude, growth to the  
limit cycle occurs.  
-- The threshold is the  
unstable limit-cycle amplitude. 
-- Disturbances with amplitude  
larger than the stable limit  
cycle value will decay to the  
limit cycle. 



Wave Profiles 
 
For these cases,  the initial disturbance had the form of a solution to the 
linear wave equation for some tangential mode (e. g., first tangential, second 
tangential , or first radial). So, a Bessel function described radial behavior 
while a trigonmetric function described azimuthal behavior. 

The nonlinear resonance introduces other modes, harmonics and sometimes  
sub-harmonics. For tangential modes, frequencies are not integer multiples of  
lower mode frequency. So, the limit cycle need not be perfectly periodic. It is  
usually characterized by the frequency of the largest Fourier component. 



LIMIT-CYCLE DESCRIPTIONS – PHASE PLANE 
(left) Disturbance  
amplitude larger than 
stable limit-cycle 
amplitude: decay to 
limit-cycle. 
 
(right) Disturbance  
amplitude less than 
stable limit-cycle 
amplitude: growth to 
stable limit-cycle. 
 
(bottom) Disturbance  
amplitude less than 
unstable limit-cycle 
amplitude: decay to 
steady-state. 
 
 



Ten-injector Simulation 
An initial condition of a 1T mode  with  
sufficient amplitude results in triggering. 
Below a threshold for initial amplitude, 
decay and stability result. Above the 
threshold, a stable limit cycle develops. 
 
The frequency spectrum analysis shows that  
nonlinear resonance, in this case, produces  
a 1T mode, a 2T mode , and a  
sub-harmonic with frequency equal to  
difference of 1T and 2T frequencies. 



Sub-harmonics and Nearly Periodic Limit Cycles 

 
 

-- A sub-harmonic mode often appears in nonlinear resonance  
with a frequency equal to the sum or difference of integer multiples  
of natural frequencies. 
-- The presence of the 1T, 2T, and sub-harmonic modes prevents a  
periodic behavior. If one natural mode dominates, a nearly periodic  
behavior results. 
--  Linear theory does not predict the existence of  harmonics for  
circular cylinders or sub-harmonics for any chamber. 
-- Galerkin methods require the assumption of the modes present;  
they do not predict the presence independently. 

Left: disturbance decays 
 
Right: growth occurs  
with new modes and  
aperiodic behavior 



Pure Second Tangential 
(2T) Mode is the Initial 
Condition 
 
Triggering is possible. 
Nonlinear resonance 
induces fourth tangential 
mode plus first  
harmonic of 2T.  
No 1T or sub-harmonic. 
 



Comparison of Variations in E and p 
-- E is found to lag p in time t and position θ for  
tangential spinning modes.  Example with 2T mode 
below. 
-- Energy release is localized in the ten injector 
streams but differences from one stream to another 
occur due to pressure phasing. 



Test with Variation  
in Reaction Time 
 
-- 1T mode is initial condition.  
-- Chemical kinetic constant is 
changed causing longer reaction 
time. 
-- The black line in contour plot  
adjusts and 2T position moves 
to  a less sensitive region. 
-- Consequently, nonlinear 
resonance does not include 2T  
and sub-harmonic. 
-- Nonlinear resonance now 
involves energy transfer to 
harmonics of 1T mode. 
 



  Energy of Threshold  Pulse 
Over a wide range, threshold triggering pressure amplitude is approximately 
inversely proportional to Gaussian pulse width. Since acoustical energy is 
proportional to the integral of the pressure squared over the 2D domain, there 
is a constant threshold energy. 



Conclusions from model-equation solution with 
co-axial injection, mixing and reaction 

• A nonlinear acoustics model for transverse modes and a co-axial model  
for propellant mixing and reaction are used to study combustion     
dynamics with a ten-injector geometry.  

• Triggering of 1T and 2T are possible; both stable and unstable limit cycles 
are identified. The stable limit behavior is not always exactly periodic. 

• Two characteristic combustion times are found and prove to be critical.  
Accordingly, a time-lag in the combustion response is found. 

• Depending on characteristic time and frequency values, nonlinear 
resonance can  transfer energy to second tangential mode (2T) and to a 
sub-harmonic mode.  Or energy can be transferred to higher harmonics. 
The instability occurs for a frequency where the heat-release response to 
pressure variation is very strong. 

• Triggering can result from either disturbances with well defined profiles 
corresponding to natural modes or localized disturbances.  

• Directional  travel orientation of a local disturbance is consequential for 
triggering. Different stability and different limit cycles can be induced. 

• Approximately, a constant energy threshold for triggering is seen. 
 



Stochastic Analysis of Triggering Mechanism: 
Polynomial Chaos Expansion (PCE) Method 
 
The several characteristics of the disturbing pulse will be the random 
variables (RV) and form the vector ξ. 
--  Equations for wave dynamics  
governing pressure and velocity. 
-- Diffusion/advection/reaction 
equations for each injector 
governing temperature and  
mass fractions. 
-- Expand the dependent variables in a  
series of Legendre polynomials (PCE) 
-- Truncate to “converge” the series. 
  P+1 = (n+ l)! /(n! l!), l is degree  of polynomial, n is number of RV. 
 -- Substitute PCE in  
equations and solve  
resulting PDEs for  
coefficients by  
finite-differences. 



Prediction of Probability of Triggering 
• For each set of RV values describing a disturbance, i.e., value of the vector ξ , the outcome 

is a random variable with value of unity or zero;  if a limit-cycle is triggered, the outcome is 
given value one  while if decay of amplitude occurs, a value of zero is given.  

 
• Each value of ξ  gives a distinct realization for the values of the field variables, e.g., 

pressure, velocity, temperature, and mass fractions. 
 
• Every realization has the same values for the coefficients in the PCE series. 
 
• Two types of pulsed disturbances were examined: (i) repeated Gaussian  pulse and (ii) 

oscillating dipole pulse. Both have orientations. 
 
• A marginal triggering probability is obtained, as a function of one of the n random 

variables (RV), with value between one and zero by integrating over the other n-1 
variables. 

 
• The outcome is predicted by PCE calculations of each realization over twelve oscillation 

periods. The accuracy is evaluated by comparison to selected realizations using 120 
periods. 

 
• The accuracy of the PCE calculations of the field variables can be evaluated by comparison 

with direct solution of the original PDEs. 
 
• PCE computational efficiency is compared to the results of Monte Carlo calculations. 

 



Calculations with PCE. Normally, 12 oscillation cycles are sufficient to predict outcome. 
Near unstable limit-cycle, slow growth behavior was checked with 120 cycles. 
PCE calculations compare favorably with direct solution of original PDEs. 



The PCE accuracy with 7th degree polynomial is quite satisfactory. 



A marginal probability is determined by integrating results over n-1 random variables. 
Comparisons are made with 95% confidence intervals Monte Carlo (MC) simulations 
using direct solutions of original PDEs.  Dipole disturbance gives expected results where  
probability of triggering increases with pulse magnitude. 



Triggering is most probable when dipole period is close to 
natural chamber period. 



For triggering of spinning (standing) wave, orientation is wanted  
(not wanted) and pulsing duration matching an odd (any) multiple  
of chamber half (full) period is optimal. 



Triggering of first tangential mode is most probable when 
pulse is centered near the outer wall . 



Tangential orientation of dipole is optimal for triggering  
first tangential mode oscillation. 



 Joint probability displays can be informative. For example,  
The maxima and minima of previous plots lead to a  
saddle-shaped behavior for the probable outcome with 
magnitude and orientation variations. 



Second-order accuracy in finite-difference calculations for PCE  
coefficients yields second-order accuracy in probability calculations. 



For  the limited number of RV here and the desired accuracy,  
the PCE calculations are substantially less costly than MC. 



     CONCLUSIONS 
 
-- Probability of Triggering may be calculated by PCE or MC 
methods. 
-- For  the RV number here, PCE is substantially more efficient 
than MC. 
 
ONGOING  STUDIES 
 
-- Relate pulse disturbances to physical causes, e.g., upstream 
flow in propellant feed systems. 
-- Model longitudinal mode oscillations. 
 
FUTURE STUDIES 
 
-- Develop control strategies to arrest triggering action. 



Thank you. 
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